
GLUEM INI SAT2.2.8
Hidetomo Nabeshima

University of Yamanashi, JAPAN
Koji Iwanuma

University of Yamanashi, JAPAN
Katsumi Inoue

National Institute of Informatics, JAPAN

Abstract—GLUEM INI SAT is a SAT solver based onM INI SAT 2.2
and the LBD evaluation criteria of learned clauses. The main
feature of the version 2.2.8 is the on-the-fly lazy simplification
techniques which consists of various probing techniques, self-
subsuming resolution, on-demand addition of binary resolvents,
and clause minimization by binary resolvents. The base solver has
features used inGLUCOSE3.0 such as restart blocking, fluctuation
strategy in the initial stage of search, additional maintaining of
good learned clauses, etc.

I. I NTRODUCTION

GLUEM INI SAT is a SAT solver based on MINI SAT 2.2 [1]
and the LBD evaluation criteria of learned clauses [2]. We
have re-implemented the version 2.2.8 from MINI SAT2.2 to
evaluate the performance of the on-the-fly lazy simplification
techniques [3], which consists of the following techniques:

1) variable elimination and equivalent literal substitution
based on probing techniques [4],

2) original clause and learned clause simplification by self-
subsuming resolution with binary resolvents, and

3) on-demand addition of binary resolvents.

The computational cost of these techniques is negligibly small.
Hence, these techniques are executed frequently throughout
the process of modern conflict-driven clause learning (CDCL)
solvers, that is, unit propagation, conflict analysis, removal of
satisfied clauses, etc.

The base solver has features used in GLUCOSE 3.0 such as
restart blocking [5], fluctuation strategy in the initial stage of
search, additional maintaining of good learned clauses, etc.

II. M AIN TECHNIQUES

GLUEM INI SAT 2.2.8 has the on-the-fly lazy simplification
techniques [3]. These techniques are defined as operations on
binary resolvents, which are extracted from unit propagation
process with almost no overhead [6], [7]. In GLUEM INI SAT,
the number of binary resolvents to be preserved is restricted
and they are maintained in a simple data structure. For each
literal y, we hold only one premise literalx such thatϕ |=
x → y, whereϕ is a given formula. We represent a premise
literal of y as premise[y] (that is, ϕ |= premise[y] → y).
Initially, premise[y] = y. In the unit propagation process,
if y is propagated and it has a dominator [6], then the
value of premise[y] is updated with the dominator. In our
experiments, each entry of premise is updated approximately
1000 times on average for solving 1192 application instances
of SAT 2009 and 2011 competitions and SAT Challenge 2012
within 1200 CPU seconds. The preserved premise literals are
updated frequently during search. That is, we maintain a partial

snapshot of binary resolvents which evolves during search.
This variation of premise literals contributes to the realization
of low cost simplification techniques which are executed on-
the-fly.

We can execute probing techniques [4] with a constant
time by using the premise literals. For example, the necessary
assignment probing can be represented as follows: suppose
that ϕ is a formula andx, y are literals. Ifϕ |= x → y and
ϕ |= ¬x → y, thenϕ |= y. This probing technique requires
two premise literals ofy. We can get two premise literals
of y, that is, the old value ofpremise[y] before updating
of it and the new value of it. We denote the old and new
values asoldpremisey and newpremisey, respectively. Then,
we can execute the necessary assignment probing as follows:
if oldpremisey = ¬newpremisey, then ϕ |= y holds. Other
probing techniques can be executed in the same way [3].
GLUEM INI SAT executes these on-the-fly probing techniques
when an entry of the arraypremiseis changed.

We can simplify clauses based on binary self-subsumption
by using the arraypremise. Given a clauseC and two literals
x, y ∈ C, we define thatx is redundant byy in C if
premise[y] = x or premise[¬x] = ¬y, since the resolvent of
C andx → y is C \ {x} and it subsumesC. The redundant
literals can be eliminated from a clause. LetC be a clause
{w1, w2, x1, · · · , xn}, wherew1 andw2 mean watched literals
andxi is an unwatched literal in two watched literal schema
[8]. In GLUEM INI SAT, we check whetherxi is redundant by
w1 or w2 to avoid the updating cost of the list of watched
clauses (ifwi is eliminated, then we should update the list of
watched clauses). This binary self-subsumption checking can
be incorporated with the scanning-loop of literals in a clause,
such as conflict analysis and removal of satisfied clauses.

Suppose thatϕ is a formula andα is an assignment.
UP(ϕ, α) represents the assignment after the unit propagation
process. Let bepremise[y] = x. This means thaty ∈
UP(ϕ, {x}), but the contrapositive¬x ∈ UP(ϕ, {¬y}) may not
hold. This is because the binary resolventx → y does not exist
as a clause inϕ explicitly. To enhance the unit propagation, for
each literalp ∈ UP(ϕ, α), if premise[¬p] ̸∈ UP(ϕ, α), then the
binary resolventpremise[¬p] → ¬p is added toϕ as a clause.
This on-demand addition is executed after the unit propagation
process.

Suppose thatC = {x1, · · · , xn}. If there is a implication
chain such that¬xi → · · · → ¬xj (i ̸= j), then xj

can be eliminated fromC. This is a generalization of the
above binary self-subsumption checking and a special case of
minimization technique used in MINI SAT [9]. GLUEM INI SAT

executes this checking for each learned clause after conflict
analysis. For each literalxj ∈ C, GLUEM INI SAT tries to
construct a chain· · · → y2 → y1 → ¬xj from the end,
wherey1 = premise[¬xj] and yk+1 = premise[yk] (k ≥ 1).
This construction is continued untilyl is ¬xi, wherexj ∈ C,
(successful case) or the current assignment ofyk is not true
(failed case). The latter condition is introduced as a heuristics
to avoid generating a long chain.

III. OTHER TECHNIQUES

GLUEM INI SAT has features which are implemented in
GLUCOSE3.0. The restart blocking [5] helps to catch a chance
of making satisfying assignment. This strategy postpones
restarting when the local trail size per a conflict is exceedingly
greater than the global one.

The variable activity decay factor is one of parameters of
VSIDS decision heuristics [10] used in MINI SAT[1]. When
the value of this parameter is small, the activity of recently
unused variables decays quickly. This makes easy to move
the search space, since the variable selection is not caught
in the past activity. GLUCOSE 3.0 increases this parameter by
0.01 from 0.8 until 0.95 whenever 5000 conflicts occur. In our
experiments, this strategy is effective for satisfiable instances.
GLUEM INI SAT also uses this strategy.

GLUCOSE 3.0 protects learned clauses from clause-deletion
only once when the LBD value of those clauses decreases
and are lower than a certain threshold. In the clause-deletion,
basically it removes half of learned clauses in order of LBD
values. But protected clauses survive only once. Furthermore,
when good learned clauses whose LBD is less than or equal
to 3 exist more than half, the limit of number of remained
learned clauses is relaxed by adding a constant number.
GLUEM INI SAT follows this management strategy.

IV. SAT COMPETITION 2014 SPECIFICS

GLUEM INI SAT is submitted to Sequential, Application
SAT+UNSAT track and Hard-combinatorial SAT+UNSAT
track. The version 2.2.8 does not have a function to output
an UNSAT proof. The previous version 2.2.7 which was
submitted to SAT 2013 competition can output UNSAT proof
when some simplification techniques are disabled.

V. AVAILABILITY

GLUEM INI SAT is developed based on MINI SAT 2.2. Per-
missions and copyrights of GLUEM INI SAT are exactly the
same as MINI SAT. GLUEM INI SAT can be downloaded at
http://glueminisat.nabelab.org/.

ACKNOWLEDGMENT

This research is supported in part by Grant-in-Aid for
Scientific Research (No. 24300007) from Japan Society for
the Promotion of Science and by Kayamori Foundation of
Informational Science Advancement.

REFERENCES

[1] N. Eén and N. S̈orensson, “An extensible SAT-solver,” inProceedings
of the 6th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2003), LNCS 2919, 2003, pp. 502–518.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” inProceedings of IJCAI-2009, 2009, pp. 399–404.

[3] H. Nabeshima, K. Iwanuma, and K. Inoue, “On-the-fly lazy clause
simplification based on binary resolvents,” inICTAI. IEEE, 2013, pp.
987–995.

[4] I. Lynce and J. P. Marques-Silva, “Probing-based preprocessing tech-
niques for propositional satisfiability,” inProceedings of the 15th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI
2003), 2003, pp. 105–110.

[5] G. Audemard and L. Simon, “Refining restarts strategies for sat and
unsat,” inCP, ser. Lecture Notes in Computer Science, M. Milano, Ed.,
vol. 7514. Springer, 2012, pp. 118–126.

[6] H. Han, H. Jin, and F. Somenzi, “Clause simplification through domina-
tor analysis,” inProceedings of Design, Automation and Test in Europe
(DATE 2011), 2011, pp. 143–148.

[7] M. Heule, M. J̈arvisalo, and A. Biere, “Revisiting hyper binary resolu-
tion,” in Proceedings of the 10th International Conference on Integration
of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR 2013), LNCS 7874, 2013, pp. 77–93.

[8] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” inProceedings of the 38th
Design Automation Conference (DAC 2001), 2001, pp. 530–535.

[9] N. Sörensson and A. Biere, “Minimizing learned clauses,” inProceed-
ings of SAT-2009, 2009, pp. 237–243.

[10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” inProceedings of DAC-
01, 2001, pp. 530–535.

