
GLUEM INI SAT2.2.7
Hidetomo Nabeshima

University of Yamanashi, JAPAN
Koji Iwanuma

University of Yamanashi, JAPAN
Katsumi Inoue

National Institute of Informatics, JAPAN

Abstract—GLUEM INI SAT is a SAT solver based onM INI SAT 2.2
and the LBD-based evaluation criteria of learned clauses. The
new features of the version 2.2.7 are (1) on-the-fly lazy sim-
plification techniques based on binary resolvents, (2) probing-
based preprocessing, (3) a new restart strategy based on conflict-
generation speed, (4) a variant of blocked restart strategy and
(5) a minor modification of the evaluation criteria of learned
clauses.

I. I NTRODUCTION

GLUEM INI SAT is a SAT solver based on MINI SAT 2.2 [1]
and the LBD-based evaluation criteria of learned clauses [2].
GLUEM INI SAT shows good performance for unsatisfiable
SAT instances. The previous version 2.2.5 [3] took the first
and second places for UNSAT and SAT+UNSAT classes in
CPU time evaluation at SAT 2011 competition, respectively.

To enhance the UNSAT performance, we have introduced
some new features to GLUEM INI SAT: (1) on-the-fly lazy sim-
plification techniques based on binary resolvents, (2) probing-
based preprocessing [4], [5], (2) a new restart strategy based
on conflict-generation speed, (4) a variant of blocked restart
strategy [6] and (5) a minor modification of the LBD-based
evaluation criteria of learned clauses.

II. M AIN TECHNIQUES

Simplification of a given CNF formula is one of important
techniques to decide the satisfiability of the formula efficiently.
The simplification techniques are used both before and during
the search process. GLUEM INI SAT has the both simplification
techniques. For preprocessing, we have implemented probing-
based techniques which consist of false-literal probing, neces-
sary assignment probing, equivalent variable probing [4] and
binary clause probing [5], besides variable and subsumption
elimination [7] which are implemented in MINI SAT 2.2.

For in-processing, GLUEM INI SAT executes the above prob-
ing techniques on-the-fly. To reduce the checking cost, we uti-
lize binary resolvents extracted from unit propagation process.
For example, letϕ = {x → y, x → z, y ∧ z → v, v ∧w → u}
and w is assigned as true. Ifx is selected as a decision
variable and assigned as true, theny, z, v, u are propagated.
The cause of the propagation ofy, z, v is x. This means
ϕ |= (x → y) ∧ (x → z) ∧ (x → v). However,u is not
propagated fromx only. It requiresx andw as premise literals.
The checking of whether a propagated literal has a single
cause or not can be done with a constant order at the unit
propagation process. Hence, we can extract a large number
of binary resolvents with very low overhead. This extraction
approach is similar to the dominator detection algorithm in

[8]. Our algorithm detects the earliest dominator (decision
literal), whereas [8] uses immediate dominators. The earliest
dominator can be detected with O(1), whereas the computation
of the immediate dominator sometimes requires linear search
between two nodes in a implication graph.

For each literal, GLUEM INI SAT holds onlyoneof premise
literals. We prepare an array namedpremise. Each entry of
the array is indexed by each literal. The value ofpremise[x]
is a literal which denotes one of premise literals ofx, that is,
ϕ |= premise[x] → x. Initially, premise[x] = x. The value of
premise[x] is updated whenx is propagated andx has a single
cause of the propagation.

We can execute probing techniques with a constant or-
der by using the arraypremise. For example, the necessary
assignment probing can be represented as follows: suppose
that ϕ is a formula andx, y are literals. If ϕ |= x → y
and ϕ |= ¬x → y, then ϕ |= y. This probing technique
requires two premise literals ofy. We can get two premise
literals of y, that is, the old value ofpremise[y] before
updating of it and the new value of it. We denote the old
and new values asoldpremisey andnewpremisey, respectively.
Then, we can execute the necessary assignment probing as
follows: if oldpremisey = ¬newpremisey, thenϕ |= y holds.
The checking cost isO(1). Other probing techniques can be
executed in the same way. GLUEM INI SAT executes these on-
the-fly probing techniques when an entry of the arraypremise
is changed. The arraypremise represents a set of binary
resolvents. These binary resolvents are also used to shrink
clauses by self-subsumption checking.

We hold only one premise literal for each literal. However,
the value of premise[y] often changes since CDCL solver
execute unit propagations very frequently. This variation of
premise literals contributes the realization of effective and low
cost simplification techniques.

III. OTHER TECHNIQUES

GLUEM INI SAT uses an aggressive restart strategy. If one of
the following conditions is satisfied, then the solver restarts:

1) an average ofLBDs over the last 50 conflicts is greater
than the global average× 0.8.

2) an average of the number of decisions per a conflict
from the last restart is greater than the global average×
0.95.

The former condition is same as GLUEM INI SAT 2.2.5 and
GLUCOSE2.1. The latter one is a new condition which intends
to generate conflicts quickly. The parameters 0.8 and 0.95 were

TABLE I
THE NUMBER OF SOLVED INSTANCES

Solver
#Solved

(SAT + UNSAT)
GLUEM INI SAT 2.2.5 199 (81 + 118)
GLUEM INI SAT 2.2.7 220 (94 + 126)
GLUCOSE 2.1 216 (94 + 122)

determined by experiments on benchmark instances of past
SAT competitions.

Even if either above restart condition is satisfied, the restart
is blocked when the local trail size per a conflict is exceedingly
greater than the global one [6]. This strategy helps to catch a
chance of making satisfying assignment. In GLUEM INI SAT,
when an average of the number of propagated literals per a
conflict from the last restart is greater than the global average
× 2.0, the restart is blocked.

The literal blocks distance (LBD) [2] is an evaluation
criteria to predict learnt clauses quality in CDCL solvers.
The effectiveness of LBD was shown at past competitions by
GLUCOSE and GLUEM INI SAT. The LBD value of a clause is
computed when the learned clause is produced from a conflict,
and re-computed when the clause is used for unit propagations.
In the re-computation, GLUEM INI SAT 2.2.7 ignores literals
whose values are fixed at the decision level 0. As the results,
the LBD values may become less than the original ones. In
2.2.7, we never remove learned clauses whose updated LBD
value isone, that is, a learned clause is never removed when
every literal of the clause are assigned at the same level once.

IV. EXPERIMENTAL RESULTS

We evaluated 3 solvers for 300 instances in the application
category of SAT 2011 competition. The solvers are GLUEM I-
NISAT 2.2.5, 2.2.7 and GLUCOSE2.1 which took the first place
as a sequential solver at SAT Challenge 2012. The experiments
were conducted on a Core i7 (2GHz) with 8GB memory. We
set a timeout for each instance to 5000 CPU seconds. Table I is
the experimental results and Fig 1 is cactus plots of the results.
For SAT instances, the performance of GLUEM INI SAT 2.2.7
is greatly improved from 2.2.5, and it is almost same as
GLUCOSE 2.1. For UNSAT instances, GLUEM INI SAT 2.2.5
solves more number of instances than 2.2.5 and GLUCOSE2.1.

V. SAT COMPETITION 2013 SPECIFICS

GLUEM INI SAT uses the option-compe for the com-
petition. This option suppresses log messages. For certi-
fied UNSAT tracks, some techniques in GLUEM INI SATare
disabled because of the implementation issue of RUP out-
put. The execution script for certified UNSAT tracks is
binary/glueminisat-cert-unsat.sh , in which bi-
nary self-subsumption checking based on thepremise array
is disabled.

VI. AVAILABILITY

GLUEM INI SAT is developed based on MINI SAT 2.2. Per-
missions and copyrights of GLUEM INI SAT are exactly the

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
[s

ec
]

#Solved

SAT

glueminisat2.2.5

glucose2.1

glueminisat2.2.7

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140

T
im

e
[s

ec
]

#Solved

UNSAT

glueminisat2.2.5

glucose2.1

glueminisat2.2.7

Fig. 1. A cactus plot for application category of SAT 2011 competition

same as MINI SAT. GLUEM INI SAT can be downloaded at
http://glueminisat.nabelab.org/.

ACKNOWLEDGMENT

This research is supported in part by Grant-in-Aid for
Scientific Research (No. 24300007) from Japan Society for the
Promotion of Science and by Artificial Intelligence Research
Promotion Foundation.

REFERENCES

[1] N. Eén and N. S̈orensson, “An extensible sat-solver,” inProceedings of
SAT-2003, 2003, pp. 502–518.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” inProceedings of IJCAI-2009, 2009, pp. 399–404.

[3] H. Nabeshima, K. Iwanuma, and K. Inoue, “GLUEM INI SAT 2.2.5,” 2011,
SAT Competition 2011 Solver Description.

[4] D. L. Berre, “Exploiting the real power of unit propagation lookahead,”
Electronic Notes in Discrete Mathematics, vol. 9, pp. 59–80, 2001.

[5] I. Lynce and J. P. M. Silva, “Probing-based preprocessing techniques for
propositional satisfiability,” inICTAI. IEEE Computer Society, 2003,
pp. 105–110.

[6] G. Audemard and L. Simon, “Refining restarts strategies for sat and
unsat,” inCP, ser. Lecture Notes in Computer Science, M. Milano, Ed.,
vol. 7514. Springer, 2012, pp. 118–126.

[7] N. Eén and A. Biere, “Effective preprocessing in sat through variable
and clause elimination,” inSAT, ser. Lecture Notes in Computer Science,
F. Bacchus and T. Walsh, Eds., vol. 3569. Springer, 2005, pp. 61–75.

[8] H. Han, H. Jin, and F. Somenzi, “Clause simplification through dominator
analysis,” inDATE. IEEE, 2011, pp. 143–148.

